

MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI – 12

MODIFIED AND CORRECTED SYLLABUS (RECEIVED FROM CHAIRPERSON ON 13.10.2023.)

M.Sc CHEMISTRY

(Choice Based Credit System)

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

FROM THE ACADEMIC YEAR 2023 - 2024

M.Sc. CHEMISTRY

(Choice Based Credit System)
PG - COURSES – AFFILIATED COLLEGES

(For those who joined from 2023- 2024 onwards)

1. PREAMBLE

Taxonomy forms three learning domains: Cognitive (knowledge), affective (attitude) and psychomotor (skill). This classification enables to estimate the learning capabilities of students. Briefly, it is aimed to restructure the curriculum as student-oriented, skill-based, and institution- industry interaction curriculum with the various courses under "Outcome Based Education with Problem Based Courses, Project Based Courses, and Industry Aligned Programmes" having revised Bloom's Taxonomy for evaluating students' skills.

Cognitive Domain

(Lower levels: K1: Remembering; K2: Understanding; K3: Applying; Higher levels: K4: Analyzing; K5:

Evaluating; K6: Creating)

Affective Domain

Psychomotor Domain.

All the changes in life in one-way or other involve chemistry. Chemistry is central to the current revolutions in science. No educated person today can understand the modern world without a basic knowledge of chemistry. The existence of a large number of chemical factories, mines and related industries necessitates chemistry education. An advanced course in chemistry will be a fascinating experience because it helps us understanding our surroundings. Hence, the Programme M.Sc. (Chemistry) is offered to meet current needs of aspiring youths and also create awareness about the in-depth scientific aspects to the society.

2. FRAMEWORK FOR POSTGRADUATE EDUCATION

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI - 12 PG - COURSES – AFFILIATED COLLEGES					
Programme FRA	MEWORK FOR POSTGRADUATE EDUCATION M. Sc Chemistry				
g	VI. SC CHEMISTY				
Programme Code					
Duration	PG-2 YEARS				
Programme	PO1: Problem Solving Skill				
Outcomes (POs)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.				
	PO2: Decision Making Skill				
	Foster analytical and critical thinking abilities for data-based decision-making.				
	PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.				
	PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills.				
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.				

PO6: Employability Skill

Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill

Equip with skills and competencies to become an entrepreneur.

PO8: Contribution to Society

Succeed in career endeavors and contribute significantly to society.

PO9: Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.

Programme Specific Outcomes (PSOs)

PSO1 – Placement

Prepare the students who will demonstrate respectful engagement with

others' ideas, behaviors, beliefs and apply diverse frames of reference

to decisions and actions.

PSO2 – Entrepreneur

Create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

Produce employable, ethical and innovative professionals to sustain in

the dynamic business world.

PSO5 – Contribution to the Society

Contribute to the development of the society by collaborating with stakeholders for mutual benefit.

3. Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System

First Year – Semester – I

Part	List of Courses	Credits	No. of Hours
	Core – I	4	5(4L + 1T)
	Core – II	4	5(4L + 1T)
	Core – III - Practical	3	5(4P + 1T)
	Core – IV - Practical	3	5(4P + 1T)
	Elective - I	3	5(4L + 1T)
	Elective – II	3	5(4L + 1T)
		20	30

Semester – II

Part	List of Courses	Credits	No. of
			Hours
	Core – V	4	5(4L + 1T)
	Core – VI	4	5(4L + 1T)
	Core – VII - Practical	3	4(3P + 1T)
	Core – VIII - Practical	3	4(3P + 1T)
	Elective - III	3	4(3L + 1T)
	Elective – IV	3	4(3L + 1T)
	Skill Enhancement Course - I	2	4
		22	30

Second Year – Semester – III

Part	List of Courses	Credits	No. of
			Hours
	Core – IX	5	6(5L+1T)
	Core – X	5	6(5L+1T)
	Core – XI - Practical	4	5(4P+1T)
	Core (Industry Module) – XII - Practical	5	5(4P + 1T)
	Elective – V	3	4(3L + 1T)
	Skill Enhancement Course - II	2	4
	Internship / Industrial Activity (Carried out in Summer Vacation at	2	-
	the end of I year – 30 hours)		
		26	30

Semester-IV

Part	List of Courses	Credits	No. of
			Hours
	Core – XIII	5	6(5L + 1T)
	Core – XIV	5	6(5L + 1T)
	Project with VIVA VOCE	7	10
	Elective – VI (Industry Entrepreneurship)	3	4
	Skill Enhancement Course – III / Professional Competency Skill	2	4
	Extension Activity (Can be carried out from Sem II to Sem IV)	1	_
	•	23	30

Total 91 Credits for PG Courses

4. COMPONENT WISE CREDIT DISTRIBUTION

Credits		Sem I	Sem II	Sem III	Sem IV	Total
Part A		20	20	22	20	82
Part B	(i) Discipline – Centric / Generic Skill (ii) Summer Internship / Industrial Training		2	2 2	2	6 2
Part C					1	1
	Total	20	22	26	23	91

Part A component and Part B (i) will be taken into account for CGPA calculation for the postgraduate programme and the other components Part B and Part C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

5. LEARNING AND TEACHING ACTIVITIES

5.1 Topic wise Delivery method

Hour Count	Topic	Unit	Mode of Delivery

5.2. Work Load

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

Activity	Quantity	Workload periods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
Cycle Test or similar	2	4
Model Test or similar	1	3
University Exam	1	3
	Total	90 periods

6. TUTORIAL ACTIVITIES

Tutorial	Торіс
Count	

7. LABORATORY ACTIVITIES

8. FIELD STUDY ACTIVITIES

9. ASSESSMENT ACTIVITIES

9.1. Assessment Principles

Assessment for this course is based on the following principles

- 1. Assessment must encourage and reinforce learning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessment must enable robust and fair judgments about student performance.
- 4. Assessment practice must be fair and equitable to students and give them the opportunity to demonstrate what they learned.
- 5. Assessment must maintain academic standards.

9.2. Assessment Details

Assessment Item	Distributed Due Date	Weightage	Cumulative
			Weightage
Assignment 1	3 rd week	2%	2%
Assignment 2	6 th Week	2%	4%
Cycle Test – I	7 th Week	6%	10%
Assignment 3	8 th Week	2%	12%
Assignment 4	11 th Week	2%	14%
Cycle Test – II	12 th Week	6%	20%
Assignment 5	14 th Week	2%	22%
Model Exam	15 th Week	13%	35%
Attendance	All weeks as per the Academic Calendar	5%	40%
University Exam	17 th Week	60%	100%

10. TEACHING METHODOLOGIES

- 1. Traditional Teaching methods like Chalk and Board, Virtual Class room, LCD projector, Smart Class, Video Conference, Guest Lectures.
- 2. Asking students to formulate a problem from a topic covered in a week's time Assignment, Class Test, Slip test.
- 3. Asking students to use state-of-the-art technologies/software to solve problems. Applications: Use of chemdraw, chempaint software
- 4. Introducing students to applications before teaching the theory.
- 5. Training students to engage in self-study without relying on faculty (for example library and internet search, manual and handbook usage, etc.)
 - 5.1 Library, Net Surfing, Manuals, NPTEL Course Materials published in the website
 - 5.2 Other university websites.

11. FACULTY COURSE FILE STRUCTURE

CONTENTS

- a) Academic Schedule
- b) Students Name List
- c) Time Table
- d) Syllabus
- e) Lesson Plan
- f) Staff Workload
- g) Course Design (content, Course Outcomes (COs), Delivery method, mapping of COs with Programme Outcomes (POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)
- h) Sample CO Assessment Tools
- i) Faculty Course Assessment Report (FCAR)
- j) Course Evaluation Sheet
- k) Teaching Materials (PPT, OHP etc.)
- 1) Lecture Notes
- m) Home Assignment Questions
- n) Tutorial Sheets
- o) Remedial Class Record, if any
- p) Projects related to the Course

- q) Laboratory Experiments related to the Courses
- r) Internal Question Paper
- s) External Question Paper
- t) Sample Home Assignment Answer Sheets
- u) Three best, three middle level and three average Answersheets
- v) Result Analysis (CO wise and whole class)
- w) Question Bank for Higher studies Preparation (GATE/Placement)
- x) List of mentees and their academic achievements

12. COURSE STRUCTURE M. Sc CHEMISTRY

Illustration - I

	First Year Semester-I	Credit	Hours per		arks x 100)	Duration for UE
			week	CIA	UE	
Part A	CC1 – Organic Reaction Mechanism-I	4	5	25	75	3 Hrs
	CC2 – Structure and Bonding in Inorganic Compounds	4	5	25	75	3 Hrs
	CC3 – Organic Chemistry Practical - I	3	5	50	50	6 Hrs
	CC4 – Physical Chemistry Practical	3	5	50	50	6 Hrs
	Elective I – EC1 (One from Group A) Pharmaceutical Chemistry/ Nanomaterials and Nanotechnology	3	5	25	75	3 Hrs
	Elective II – EC2 (One from Group B) Electrochemistry/Molecular Spectroscopy	3	5	25	75	3 Hrs
	Total	20	30			

	Semester-II	Credit	Hours per week		arks x 100)		
			WCCK	CIA	UE		
Part A	CC5 – Organic reaction mechanism-II	4	5	25	75	3 Hrs	
	CC6– Physical Chemistry-I	4	5	25	75	3 Hrs	
	CC7 – Organic Chemistry Practical - II	3	4	50	50	6 Hrs	
	CC8 – Inorganic Chemistry Practical - I	3	4	50	50	6 Hrs	
	Elective III–EC3 (One from Group C) Medicinal Chemistry/Green Chemistry	3	4	25	75	3 Hrs	
	Elective-IV-EC4 (One from Group D) Bio Inorganic Chemistry/Material Science	3	4	25	75	3 Hrs	
Part B	Skill Enhancement Course -SEC 1 (One from Group G) Industrial Chemistry	2	4	25	75	3 Hrs	
	Total	22	30				

13. CONSOLIDATED TABLE FOR CREDITS DISTRIBUTION

	Category of Courses	Number of Courses	Number of Credits in each Category of Courses	Total Credits	Total Credits for the Programme
	Core	14	57		
PART A	Project with viva voce	1	7		
	Elective (Generic and Discipline Centric)	6	18	82	
PART B (i)	Skill Enhancement (Term paper and Seminar & Generic / Discipline - Centric Skill Courses) (Internal Assessment Only)	3	6	6	88 (CGPA)
PART B(ii)	Summer Internship	1	2	2	03 (Non CGPA)
PART C	Extension Activity	1	1	1	
					91

14. ELECTIVE COURSES

Courses are grouped (Group A to Group E) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components (IC) like Pharmaceutical Industries, Polymer labs courses for flexibility of choice by the stakeholders / institutions.

Semester I: Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology

Group B (PC/AC/IC)

- 1. Electrochemistry
- 2. Molecular Spectroscopy

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen from Group D

Group C:(PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

Group D (PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from **Group E**

Group E: (PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

15. SKILL ENHANCEMENT COURSES

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders / institutions.

Group G (Skill Enhancement Courses) SEC: (Practical based paper)

- Computational Chemistry
- ➤ 3D printing in Chemistry
- Preparation of Consumer products

- > Chemistry in everyday life
- ➤ Cosmetic Chemistry
- Origin lab
- ➤ Industrial Chemistry
- ➤ Research Tools and Techniques

16. TESTING PATTERN

16.1 Internal Assessment

THEORY: For theory courses, there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no minimum pass mark for internal. But, if it is less than 50%, it should be compensated in the external.

Components	Marks
The average of the best two tests from three compulsory tests	15
Assignment	05
Seminar	05
Total	25

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be two tests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour. There is no improvement for CIA of both theory and laboratory, and, also for University End Semester Examination.

PRACTICAL

Maximum marks: 50

There is no minimum pass mark for internal. But, if it is less than 50%, it should be compensated in the external.

The break-up for the internal component will be as follows:

Components	Marks
Number of Experiments	30
Record	10
Mid-Term and Model Test Average	10
Total	50

PROJECT

Maximum marks: 50

There is no minimum pass mark for internal. But, if it is less than 50%, it should be compensated in the external.

Students will do the experiments and project work on a title approved by the respective project supervisor. Students will maintain daily records and present oral reports while doing project preparation. All the above process will be duly assessed by the project supervisor to award the internal mark.

16.2 External Assessment

THEORY

Maximum marks: 75

Passing minimum marks: 38

The external evaluation will be based on the examinations to be conducted by the University at the end of each semester.

Written Examination: Theory Paper (Bloom's Taxonomy based)

Question Paper Model

	Maximum 75 Marks
Intended Learning Skills	Passing Minimum: 50%
	Duration: Three Hours
Memory Recall / Example/	Part -A (15x 1 = 15 Marks)
Counter Example / Knowledge	Answer ALL questions
about the Concepts/ Understanding	(Multiple choice questions)
	Three questions from each UNIT
Descriptions/ Application	$Part - B (5 \times 4 = 20 Marks)$
(Problems)	Answer ALL the questions choosing either (a) or (b)
	[One Question from each Unit]
Analysis /Synthesis / Evaluation	Part-C (5 x 8 = 40 Marks)
	Answer ALL the questions choosing either (a) or (b)
	[One Question from each Unit]

Each question should carry the course outcome and cognitive level. For instance.

1. [CO1: K2] Question xxxx

2. [CO3: K1] Question xxxx

PRACTICAL

Maximum marks: 50

Passing minimum marks: 25

Practical examinations will be conducted at the end of each semester. The scheme of valuation is to be decided by the respective board of Question setters.

PROJECT AND VIVA-VOCE

Maximum marks: 50

Passing minimum marks: 25

Note:

Scheme of evaluation of Project report includes choosing a universal problem, novelty of the title, purpose and importance of work for future development and methodology of writing the project report.

17. DIFFERENT TYPES OF COURSES

- (i) Core Courses
- (ii) Elective Courses (ED within the Department Experts)
- (iii) Skill Development Courses
- (iv) Institution-Industry-Interaction (Industry aligned Courses)

Programmes /course work/ field study/ Modelling the Industry Problem/ Statistical Analysis / Commerce-Industry related problems / MoU with Industry and the like activities.

20. SYLLABUS FOR M. Sc. CHEMISTRY SEMESTER - I

Title of the	ORGANIC	REACTION	ME	CHANISM -	- I		
Course	Comp I Co	C1					
Paper No. Category	Core I - CC1 Core Year I Credits 4 Course						
Category	Core	Semester	I	Credits	+	Code	
Instructional	Lecture	Tutorial	_	Practice		Total	I
hours per	4	1	-			5	
week							
Prerequisites		epts of organic		•			
Objectives of the course		and the feasi	bility	and the n	necha	nism of vari	ous organic
the course	reactions.	ahand tha ta	نمطم	anas in th	a da	otomoinotion	of monation
	mechanisms	ehend the te	CIIIII	ques in in	e de	etermination	of feaction
		s. tand the con	cent	of stereock	amic	try involved	in organic
	compounds		сері	or stereoer	iciiiis	iry involved	in organic
	To correlate	e and appreciat	e the	differences	invol	ved in the vari	ous types of
	organic read	ction mechanis	ms.				
	To design	feasible syn	thetic	routes for	r the	preparation	of organic
	compounds						
Course	UNIT-I: M	lethods of Det	termi	ination of R	Reacti	on Mechanisi	m: Reaction
Outline	intermediates, The transition state, Reaction coordinate diagrams,						
	Thermodynamic and kinetic requirements of reactions, Hammond						
	postulate. Methods of determining mechanism: Kinetic methods of						
	determination: Rate law - Primary and secondary isotope effect. Non-						
	Kinetic methods of determination: Testing and Trapping of intermediates,						
	Isotopic labeling, Cross-over experiment, Product analysis and stereo						
	chemical evidence.						
	Effect of structure on reactivity: Hammett and Taft equations. Linear free					Linear free	
	energy relationship, substituent and reaction constants.						
	UNIT-II: Aromatic and Aliphatic Electrophilic Substitution:						
	Aromaticit	y: Aromaticit	y in	benzenoid	l, no	n-benzenoid,	heterocyclic
	compounds	and annulenes					
	Aromatic e	electrophilic s	ubsti	tution: Orie	ntatio	on and reactivi	ty of di- and
	polysubstitu	ited phenol, n	itrob	enzene and	halob	enzene, partia	al rate factor
	Reactions	involving nit	rogen	electrophi	les:	nitration, nitr	rosation and
	diazonium	coupling; S	ulphi	ur electrop	hiles:	sulphonatio	n; Halogen

electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions.

Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1-Mechanism and evidences.

UNIT-III: Aromatic and Aliphatic Nucleophilic Substitution:

Aromatic nucleophilic substitution: Mechanisms - S_NAr , S_N1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attacking nucleophile. Reactions: Oxygen and Sulphurnucleophiles, Bucherer and Rosenmund reactions, Von Richter, Sommelet-Hauser and Smiles rearrangements.

Aliphatic Nucleophilic Substitution: S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. S_N1 ' S_N2 ' and S_Ni ' mechanism and evidences, Swain- Scott, Grunwald-Winstein relationship - Ambident nucleophiles.

UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration.

Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis.

UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation,

	chemical consequence of conformational equilibrium - Curtin-Hammett
	Principle. Stability of five and six-membered rings: mono-, di- and
	polysubstituted cyclohexanes, conformation and reactivity in cyclohexane
	systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins
	and Brett's rule.
	Optical rotation and optical rotatory dispersion, conformational
	asymmetry, ORD curves, octant rule, configuration and conformation,
	Cotton effect, axial haloketone rule and determination of configuration.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	
a part of	be solved.
internal	(To be discussed during the Tutorial hours)
component only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
course	
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition,
Text	John-Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New
	Age International Publishers, 2015. 4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,
	Oxford University Press, 2014.
Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw
	Hill, 2000.
	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson
XX7 1 *4 1	Education Asia, 2004.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic 2 https://www.organic.chemistry.org/
Source Outcom	2. https://www.organic-chemistry.org/ es (for Mapping with POs and PSOs)
Students will be	
	he basic principles of organic chemistry.
	estand the formation and detection of reaction intermediates of organic

reactions.

CO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong – 3, Medium-2, Low-1

Level of Correlation between PSO's and CO's

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Methods of Evaluation					
	Continuous Internal Assessment Test				
Internal	Assignments	25 Marks			
Evaluation	Seminars	- 23 Marks			
	Attendance and Class Participation				
External	End Semester Examination	75 Marks			
Evaluation	End Semester Examination	75 IVIAIRS			
	Total 100 Marks				
Methods of Assessment					
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions.				

Understand/ Comprehend (K2)	MCQ, True/False, Short essays, Concept explanations, short summary or overview.
Application	Suggest idea/concept with examples, suggest formulae, solve problems,
(K3)	Observe, Explain.
Analyze (K4)	Problem-solving questions, finish a procedure in many steps, Differentiate between various ideas, Map knowledge.
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pros and cons.
Create (K6)	Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations.

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUCT	TURE AND	BO	NDING I	N INC	ORGANIC CO	OMPOUNDS
Course Paper No.	Core II -	.CC2					
Category	Core	Year	I	Credits	4	Course	
		Semester	I			Code	
Instructional	Lecture	Tutorial	Lab	Practice	•	Total	
hours per week	4	1	-			5	
Prerequisites		cepts of In				· ·	1 1
Objectives of the course		nine the str	uctui	al proper	nes o	f main group	compounds and
Course	clusters.	fundamente	1 1zn	ovelodao	on th	na stematureal s	ospects of ionic
	crystals.	Tungamenta	ıı Kii	owieuge	on u	ie structurar a	aspects of ionic
		stand structi	ires s	and bondir	o in	inorganic poly	mers and metal
	clusters.	stand structi	11 C5 C	ina bonan	ig iii .	morgame pory	mers and metar
		the effect of	f poin	t defects a	and li	ne defects in io	onic crystals.
		ite the struc	-				J
Course Outline		CHEMICAI					
	Valence 1	Bond theor	y: Le	wis struct	ure –	Concepts and	VB theory of H ₂
	molecule	- Stereoche	emist	ry of hybr	id or	bitals – Calcul	lation of s and p
	characters	s of equiva	alenc	e and no	nequ	ivalence of h	ybrid orbitals -
	VSEPR th	neory.					
	M.O. theory – Linear combination of Atomic orbitals ($s - s$, $s - p$, $d - l$						
	$p, p-p$ and $d-d$ overlapping) $-\sigma$, π , δ and quadruple bond. $-M.O.$						
	diagrams of hetero nuclear diatomic molecules (CO, NO, HF) and						
	triatomic molecules (BeH ₂ , H ₂ O, CO ₂) – Walsh diagrams – Structure						
	and hybridization - Bents rule and apicophilicity.						
	Ionic Bond: Lattice energy - Born-Lande equation, Born Haber cycle						
	and Kapustinskii equation.						
	UNIT-II: Structure of main group compounds and clusters:						
	Structure of silicates - applications of Pauling's rule of electrovalence -						
	isomorphous replacements in silicates – ortho, meta and pyro silicates –						
	one dimensional, two dimensional and three-dimensional silicates.						
	Structure of silicones, Structural and bonding features of B-N, S-N and						
	P-N com	pounds; Pol	ly ac	ids – type	s, ex	amples and str	ructures; Borane
	cluster:	Structural	featu	res of c	loso,	nido, aracha	no and klado;
	carborane	es, hetero a	and 1	metalloboi	anes;	Wade's rule	to predict the
	tructure o	f borane clu	ıster;	main grou	ıp clu	sters –zintl ion	IS.

UNIT-III: Solid state chemistry – I: Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Crystal systems and Bravais lattices, Symmetry operations in crystals, glide planes and screw axis; point group and space group. X-ray diffraction technique: Bragg's law, Powder diffraction method – Principle and Instrumentation. **UNIT-IV: Solid state chemistry – II:** Structural features of the crystal systems: Rock salt, zinc blende & wurtzite, fluorite and anti-fluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normal and inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) – principles and examples. UNIT-V: Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals - point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property; Linear defects and its effects due to dislocations and colour centers. Extended Ouestions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Professional Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. A R West, Solid state Chemistry and its applications, 2ndEdition Recommended **Text** (Students Edition), John Wiley & Sons Ltd., 2014. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001. 3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press, 2012. 4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977. 5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: NewYork, 1983.

Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Students will be able

CO1: To predict the geometry of main group compounds and clusters.

CO2: To explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: To understand the various types of ionic crystal systems and analyze their structural features.

CO4: To explain the crystal growth methods.

CO5: To understand the various types of defects in crystals.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ΓΙCΑ	L-I	
Course							
Paper No.	Core III		T .	G 194			
Category	Core	Year Semester	I	Credits	3	Course Code	
Instructional	Lecture	Tutorial	_	Practice		Total	
hours per week	Lecture	1	Δ	Tractice	:	5	
Prerequisites	Rasic cor	cepts of org	'	chemistry	,	13	
Objectives of the				•		tion qualitati	ive analysis and
course		on of organi		_	puru	dania.	ive unaryons una
	1 1	•			hand	lling of chem	nical reagents for
		op anarytics n of binary a				_	near reagents for
							votamatically and
	-	_		eu organi	e eo	imponents sy	stematically and
0 0		them suita		6.0	•	• 4	(1 , 1
Course Outline	_		•	s of Or	gani	c mixture ((atleast six two
	1	nt mixtures)					
		eparation of	_		es		
	• El	lemental and	alysis	}			
	• Fu	unctional gr	oup(s	s) identific	ation		
	• P1	eparation of	f deri	vatives			
	• Pl	nysical prop	ertie	s determi	natio	n (melting p	oint and boiling
	ро	oint) for both	h con	nponents a	and th	eir derivative	s.
	Analysis may be performed in micro (or) macro scale depending upon						
		tions of the			`		
		lass work:		,			
		omponent m	ixtur	es (Separa	tion)		
Extended							ious competitive
Professional							E /TNPSC others
Component (is a	to be solv						
part of internal	(To be di	scussed duri	ng th	ne Tutorial	hour	rs)	
component only,							
Not to be included							
in the external							
examination question paper)							
Skills acquired	Knowled	ge, Proble	m	solving,	Ana	lytical abili	ty, Professional
from this course		_		_		on and Transfe	•
Recommended		•					istry: Small Scale
Text							antitative Organic
	Ar	alysis, Pear	son I	Education,	2011	l.	_
			•	-		nual of Org	ganic Chemistry,
		w Age Inte				<u>.</u>	.
						-	R. Kulandaivelu,
		-	es of	Practical	Che	mistry, Sultar	n Chand & Sons,
		04. K Ahluwa	lia d	and D A	aaam	wal Comprol	hensive Practical
	4. V.	ıx. Amuwa	11a, i	anu K. A	ggar	wai, Comprei	hensive Practical

	Organic Chemistry, Universities Press, 2004
Reference Books	1. R.G. Engel, D.L. Pavia, G.M. Lampman and G.S. Kriz, A
	Microscale approach to Organic Laboratory, 5 th edition,
	Paperback – International Edition, 2012.
	2. P.B. Cranwell, L.M. Harwood, and C. J. Moody,
	Experimental Organic Chemistry, 3rd edn, Wiley-Blackwell,
	2017.
	3. J. Leonard, B. Lygo and G. Procter, Advanced Practical Organic
	Chemistry, 3rd edn, CRC Press, 2013.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Students will be able:

CO1: To explain the basic separation procedures of organic mixtures.

CO2: To select the separation methods to separate the organic mixtures.

CO3: To classify the functional groups using systematic procedure.

CO4: To determine the physical properties of organic compounds.

CO5: To analyze the separated organic components systematically and derivative them suitably.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the Course	PHYSICA	L CHEMIS	STR	Y PRACT	ICA	L	
Paper No.	Core IV-	CC4					
Category	Core	Year	I	Credits	3	Course	
		Semester	I			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	-	1	4			5	
Prerequisites		vledge of ph					
Objectives of the course			_	iple of	condi	ictivity expe	riments through
the course		etric titratio			. •		001 1 1
						-	coefficient and
				=			st order kinetics.
		_		_		-	system forming
	_	_	olid	and fine	d its	eutectic te	mperatures and
	composition						
Course Outline		Conductivity	_				
			•		ictano	ce of a strong e	electrolyte & the
		tion of DHC			_		
			vald's	s Dilution	Law	& Determinat	ion of pKa of a
	weak ac				_		
						eak electrolyte	
			-			cance of a wear	
						stwald dilutio	
							etermination of
	_				_	electrolyte at d	
				_	validi	ty of the Onsa	ger's theory as
		g law at high					
		tometric titra	ation	of a mixtu	ire of	HCl and CH ₃	COOH Vs
	NaOH.						
		tometric titra		· ·			
		tometric titra	ation	of CH ₃ CC	ONa	Vs HCl.	
	UNIT-II:						
	1			•	•		; determine the
	_		ficier	nt and al	so t	he activation	energy of the
	reaction						
							l iodine in acidic
				ethod and	detei	mine the orde	r with respect to
		and acetone					
		Phase diag					
		-	_		imple	binary systen	n
	1. Naphtha	lene-phenar	threr	ne			
	2. Benzopł	nenone- dipl	nenyl	amine.			
Extended	Questions	related to the	e abo	ve topics,	from	various comp	etitive

Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference	1. J.B.Yadav, Advanced Practical Physical Chemistry, Goel Publishing
Books	House, 2001.
	2.G.W.Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J.N.Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987. 4. Shailandra V. Sinha, Physical Chamistry, A laboratory, Manual Narrasa.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual, Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning	16/Isem/cmp511/lab_handout_new.pdf
source	10/15011/011p511/140_Halldott_How.pai
	Outgames (for Manning with POs and PSOs)

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To explain the principles of conductometric titrations and estimate the strength of solutions.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 – Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the	PHARM	ACEUTIC	AL C	CHEMIST	RY		
Course	7 71 (1 7	T 704					
Paper No.	Elective 1		т	Cuadita	3	Cauras	
Category	Elective	Year Semester	I	Credits	3	Course Code	
Instructional	Lecture	Tutorial		Practice		Total	
hours per week	4	1	-	Tractice		5	
Prerequisites	Basic kno	wledge on	drugs	and doses	5	ı	
Objectives of the	To unders	stand the ad	vance	ed concept	s of p	harmaceutical	chemistry.
course	To recall	the principle	e and	biological	l func	ctions of variou	s drugs.
			to kı	now the in	nport	ance as well th	ne consequences
	of various	· ·					
						structural activ	
Course Outline	UNIT-I:	Physical pi	oper	ties in Ph	arma	aceuticals: Phy	sical properties
	of drug r	nolecule:	physi	cal proper	rties.	Refractive ind	lex- Definition,
	explanation	on, formula	a, im	portance,	dete	rmination, spe	ecific & molar
	refraction	. Optical a	ctivit	y\rotation-	moı	nochromatic &	polychromatic
	light, opt	ical activity	y, an	gle of ro	tatior	n, specific rota	ation examples,
	measuren	nent of op	otical	activity.	Die	electric consta	nt & Induced
	Polarizati	on- Diele	ctric	constant	ex	planation &	determination.
	Rheology	of phar	mace	eutical sy	stem	s: Introduction	on, Definition,
	Application	ons, concep	t of	viscosity,	New	ton's law of fl	ow, Kinematic,
	Relative,	Specific, R	educ	ed & Intri	insic	viscosity. New	vtonian system,
	non-New	tonian syste	m- P	lastic flow	, Pse	udoplastic flow	, Dilatant flow.
	Viscosity	measureme	ents-	selection	of v	iscometer for	Newtonian and
	non-New	tonian syste	m.				
	UNIT-II:	Isotopic	Dilu	tion ana	lysis	principle an	nd applications,
	Neutron	activation	analy	sis: Princ	ciple,	advantages a	and limitations,
	Scintillati	on coun	iters:	Body	SC	canning. Int	troduction to
	radiophar	maceuticals	•	Properties	3	of various	types of
	radiophar	maceuticals	, R	adiopharn	naceu	iticals as d	liagnostics, as
	therapeuti	ics, for rese	arch	and steriliz	zatio	n. Physico Cher	mical Properties
	and drug	action. Ph	ysico	chemica	l pro	perties of dru	gs (a) Partition
	coefficien	t, (b) solubi	ility (c) surface	activ	ity, (d) degree of	of ionization.
	UNIT-III	: Drug do	sage	and prod	luct	development:	Introduction to
	Drug Dos	sage Forms	& D1	rug Delive	ry sy	stem – Definit	ion of Common
	terms. D	rug Regula	ation	and con	trol,	pharmacopoei	as formularies,

sources of drug, drug nomenclature, routes of administration of drug products, need for a dosage form, classification of dosage forms. UNIT-IV: Development of new drugs: Introduction, procedure followed in drug design, the research for lead compounds, molecular modification of lead compounds. Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, inductive effect, isosterism, bioisosterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory. Quantitative structure activity relationship (QSAR): Development of QSAR, receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables. UNIT-V: Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Molecular Docking - Selection of binding protein - RCSB -Druglikeness of the ligand – ADMET properties – Detection using online servers - AutoDock Vina - Methods and Result analysis -Visualization of the Ligand-Protein interaction. Extended Questions related to the above topics, from various competitive Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. 1. Physical Chemistry- Bahl and Tuli. Recommended 2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh **Text** Prakashan-. C.V.S. Subramanyam. 3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R. Chatwal, Himalaya Publishing house. 4. Instrumental method of Analysis: Hubert H, Willard, 7th edition. 5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S. Chand & company Ltd. Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultan chand & Sons.

Reference Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi.
	3. Physical Pharmacy and Pharmaceutical Sciences by Martins,
	Patrick J. Sinko, Lippincott. William and Wilkins.
	4. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter,
	CBS Publisher Ltd.
	5. Ansels pharmaceutical Dosage forms and Drug Delivery System by
	Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.
Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5: To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level Of Correlation Between PSO's And CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

Title of the Course	NANO M	IATERIAI	S Al	ND NANC) TE	CHNOLOGY				
Paper No.	Elective 1	– EC1								
Category	Elective	Year	Ι	Credits	3	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lal	Practice		Total				
hours per week	4 1 - 5									
Prerequisites Objectives of the	Basic knowledge of crystallography and material science									
Objectives of the course	To understand the concept of nano materials and nano technology. To understand the various types of nano materials and their properties.									
Course							mportant nano			
	materials.		арр	ncations	OI S	synthetically 1	important nano			
			acteri	stics of va	rious	nano materials	s synthesized by			
	new techr		actori	istics of va	irous		s synthesized by			
		•	outes	for synthe	etical	ly used new nai	no materials.			
Course Outline	UNIT-I:	Introduct	ion	of nanon	nater	ials and nar	notechnologies:			
	Introducti	on-role of	size,	classificat	ion-0	D, 1D, 2D, 3D	D. consolidation			
	of Nano	powders.	Fea	atures of	nan	ostructures, E	Background of			
	nanostruc	tures. Tech	nique	es of synth	esis c	of nanomaterial	s- Bottom –Up,			
	Top-Dow	n, Tools o	f the	nanosciei	nce.	Applications of	f nanomaterials			
	and techn	ologies.								
	UNIT-II:	Syntheti	c M	Iethods:	Bono	ding and stru	ucture of the			
	nanomate	rials, Predi	cting	the Type	of B	onding in a Su	ibstance crystal			
	structure.	Metallic n	anop	articles, S	urfac	es of Material	s, Nanoparticle			
	Size and	Properties.	Synt	hesis- Phy	sical	and chemical	methods - inert			
	gas condo	ensation, ar	c dis	scharge, la	iser a	blation, sol-ge	l, solvothermal			
	and hydro	othermal-C	VD-ty	ypes, meta	ıllo o	rganic, plasma	enhanced, and			
	low-press	ure CVD. N	Aicro	wave assis	sted a	nd electrochem	ical synthesis.			
	UNIT-III	: Mechan	ical	Propertie	s of	Nanomateria	ls: Mechanical			
	properties	of mater	ials,	theories 1	eleva	ant to mechan	ical properties.			
	Technique	es to study	mec	hanical pr	operti	ies of nanomat	erials, adhesion			
	and friction	on, thermal	prope	erties of na	noma	aterials				
	Nanoparti	cles: gold	and	silver, mo	etal o	oxides: silica,	iron oxide and			
	alumina -	synthesis a	nd pr	operties.						
	UNIT-IV	: Electric	al I	Properties	of	Nanomateria	als: Electrical			
	properties	s, Conducti	vity	and Resis	tivity	, Classification	n of Materials			

based on Conductivity, magnetic properties, electronic properties of materials. Classification of magnetic phenomena. Semiconductor materials – classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type semiconductor-Hall effect quantum and anomalous, Hall voltage - interpretation of charge carrier density. Applications of semiconductors: p-n junction as transistors and rectifiers, photovoltaic and photogalvanic cell. UNIT-V: Nano Composites: Nano thin films, nanocomposites. Application of nanoparticles in different fields. Core-shell nanoparticles types, synthesis, and properties. Nanocomposites - metal- ceramic- and polymer-matrix composites-applications. Characterization – SEM, TEM and AFM - principle, instrumentation and applications. Extended Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Professional Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Text Publishers, 2016. 2. Arumugam, Materials Science, Anuradha Publications, 2007. 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007. Reference Books 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. 2. Arumugam, Materials Science, Anuradha Publications, 2007. 3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxford Science Publications, 2010 4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. 5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction

	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Website and e-learning source	 http://xrayweb.chem.ou.edu/notes/symmetry.html. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the Course	ELECTE	ROCHEMI	STR	Y					
Paper No.	Elective 1	I - EC2							
Category	Elective	Year	I	Credits 3		Course			
		Semester	I			Code			
Instructional	Lecture	Tutorial	La	b Practice		Total			
hours per week	4	1	-			5			
Prerequisites		wledge of e				•	0 1		
Objectives of the	To understand the behavior of electrolytes in terms of conductance, ionic atmosphere, interactions.								
course		_			1 .		C 11 CC		
		arize the st	ructu	ire of the	elect	trical double la	yer of different		
	models.		1 .		. 1				
	-					ensity and over	potential.		
						nical reactions.	1		
		-		• -	ver	voltages and its	s applications in		
Carrage Oradiina		lytical tech			::4.	-4: X724 II	- CC C4 1 '4-		
Course Outline				_			off factor and its		
		Ü	•	•			behavior. Ionic		
	_			Ū		•	efficient-concept		
	of ionic s	strength, De	bye	Huckel the	eory	of strong elect	trolytes, activity		
	coefficier	t of strong	elec	trolytes D	eterr	nination of act	ivity coefficient		
	ion - solv	vent and io	n-ior	n interac	tions	s. Derivation of	f Debye-Huckel		
	limiting 1	aw at appre	eciab	le concent	ratio	n of electrolyte	es modifications		
	and app	lications.	Elect	trolytic c	ondu	iction-Debye-H	uckel Onsager		
	treatment	of strong e	electi	olyte-qual	itativ	e and quantita	tive verification		
	and limita	itions.							
	UNIT-II:	Electrode	e-elec	ctrolyte ir	iterf	ace: Interfacia	l phenomena -		
	Evidence	s for electri	cal o	double lay	er, p	olarizable and	non-polarizable		
	interfaces	, Electroca	pillaı	ry phenom	nena	- Lippmann e	equation electro		
	capillary	curves.	Ele	ctro-kineti	c	phenomena	electro-osmosis,		
	electroph	oresis, strea	ming	g and sedi	ment	tation potential	s, colloidal and		
	poly elec	trolytes. Str	uctu	re of doub	le la	yer: Helmholtz	z -Perrin, Guoy-		
	Chapman	and Stern	mod	els of elec	etrica	al double layer	. Zeta potential		
						s and limitation			
	UNIT-III	: Electrodi	cs of	f Elementa	ary I	Electrode Reac	ctions: Behavior		
	of electro	des: Standa	rd ele	ectrodes ar	nd ele	ectrodes at equi	ilibrium. Anodic		
	and Cath	odic currer	nts, o	condition	for 1	the discharge	of ions. Nernst		

equation, polarizable and non-polarizable electrodes. Model of three electrode system, over potential. Rate of electro chemical reactions: Rates of simple elementary reactions. Butler-Volmer equation and Tafel equation-significance of exchange current density, net current density and symmetry factor. Low and high field approximations. symmetry factor and transfer coefficient Tafel equations and Tafel plots.

UNIT-IV: Electrodics of Multistep Multi Electron System: Rates of multi-step electrode reactions. Rate determining step, electrode polarization and depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Reduction of I³⁻, Fe²⁺ and dissolution of Fe to Fe²⁺. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams.

UNIT-V: Concentration Polarization, Batteries and Fuel cells: Modes of Transport of electro active species - Diffusion, migration and hydrodynamic modes. Role of supporting electrolytes. Polarography-principle and applications. Cyclic voltammetry- anodic and cathodic stripping voltammetry and differential pulse voltammetry. Sodium and lithium-ion batteries and redox flow batteries.

Energy production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high temperature fuel cells.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014.
- 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.
- 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008.

	4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan								
	and P.S. Raghavan, Electrochemistry-Principles and applications,								
	S. Viswanathan Printers, Chennai, 2007.								
	5. Joseph Wang, Analytical Electrochemistry, 2 nd edition, Wiley,								
	2004.								
Reference Books	1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry,								
	vol.1 and 2B, Springer, Plenum Press, New York, 2008.								
	2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro								
	chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.								
	. Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New								
	York, 2010.								
	4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.								
	5. K.L. Kapoor, A Text book of Physical chemistry, volume-3,								
	Macmillan, 2001.								
Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.								
e-learning source									

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study the mechanism of multi- step electrode reactions.

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3-Strong, 2-Medium, 1-Low

Title of the	MOLEC	ULAR SPE	CTF	ROSCOPY	Z		
Course Paper No.	Elective 1	I _ FC2					
Category	Elective	Year	Ι	Credits	3	Course	
		Semester	I	0100108		Code	
Instructional	Lecture	Tutorial	Lal	Practice		Total	1
hours per week	4	1	-			5	
Prerequisites		wledge of s	_				
Objectives of the					ion a	nd vibrations o	n the spectra of
course	1 2	comic molec					
	_			-		1 0	ectroscopy and
		ition pattern		-			
	_	-				-	iple to interpret
			•	• •		lectronic transi	
							erms of splitting
	-		ns us	sing corre	latior	i techniques s	uch as COSY,
		, NOESY.		المنام المسا	.4:	of malecules	using different
	_		ructu.	rai eiuciua	ation	of molecules	using different
Course Outline	•	echniques.	and	Domon C	naatı	engannya Dotat	ional anastra of
Course Outline					_		ional spectra of
	diatomic	and polyate	omic	molecules	s. Int	ensities of rot	ational spectral
	lines, effe	ect of isotop	ic sul	bstitution.	Non-	rigid rotators.	Classical theory
	of the Ra	man effect,	pola	rizability a	s a te	ensor, polarizab	oility ellipsoids,
	quantum	theory of th	e Ra	man effec	t, Pui	re rotational Ra	aman spectra of
	linear and	d asymmetr	ric to	p molecu	les,	Stokes and an	ti-Stokes lines.
	Vibration	al Raman s _l	ectra	a, Raman a	ctivi	ty of vibrations	, rule of mutual
	exclusion	, rotational	fine	structure-	Q an	d S branches,	Polarization of
	Raman sc	attered phot	tons.				
	UNIT-II:	Vibratio	nal	Spectroso	copy:	Vibrations	of molecules,
	harmonic	and anhar	moni	c oscillato	ors- v	vibrational ener	rgy expression,
	energy le	vel diagram	ı, vib	rational w	ave 1	functions and t	heir symmetry,
	selection	rules, ex	press	ion for	the	energies of	spectral lines,
	computati	ion of inter	sitie	s, hot ban	ds, e	effect of isotop	oic substitution.
	Diatomic	vibrating	rotor	, vibratio	nal-ro	otational spects	ra of diatomic
	molecules	s, P, R b	ranch	ies, break	dowr	n of the Bor	n-Oppenheimer
	approxim	ation. Vib	ration	ns of pol	lyatoı	mic molecules	s – symmetry
	properties	s, overtone a	and c	ombinatio	n fre	quencies. Influ	ence of rotation

on vibrational spectra of polyatomic molecule, P, Q, R branches, parallel and perpendicular vibrations of linear and symmetric top molecules.

UNIT-III: **Electronic** spectroscopy: Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles. photoelectron spectra of simple molecules, photoelectron spectroscopy (XPS). Lasers: Laser action, population inversion, properties of laser radiation, examples of simple laser systems.

UNIT-IV: NMR and Mass Spectrometry: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. ¹³C NMR and structural correlations – DEPT. Brief introduction to 2D NMR – COSY, NOESY and HETCOR. Introduction to ³¹P, ¹⁹F NMR. Mass Spectrometry:

Mass Spectrometry: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum.

Structural elucidation of organic compounds by combined spectral techniques.

UNIT-V: ESR and Mossbauer Spectroscopy: ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and

structure elucidation of organic radicals using ESR spectroscopy; Spin
orbit coupling and significance of g-tensors, zero/non-zero field
splitting, Kramer's degeneracy, application to transition meta-
complexes (having one to five unpaired electrons) including biological
molecules and inorganic free radicals. ESR spectra of magnetically
dilute samples.
Principle of Mossbauer spectroscopy: Doppler shift, recoil energy
Isomer shift, quadrupole splitting, magnetic interactions. Applications
Mossbauer spectra of high and low-spin Fe and Sn compounds.
Extended Questions related to the above topics, from various competitive
Professional examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
part of internal (To be discussed during the Tutorial hours)
component only,
Not to be included
in the external
examination
question paper)
Skills acquired from this course Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended 1. C. N. Banwell and E. M. McCash, <i>Fundamentals of Molecula</i>
Text Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
2. R. M. Silverstein and F. X. Webster, Spectroscopic Identification
of Organic Compounds, 6 th Ed., John Wiley & Sons, New Yor. 2003.
3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Boo
Society, 1987.
4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organ
Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, Ne
Delhi, 1988.
5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunder
Philadelphia, 1992. Reference Books 1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
University Press, Oxford, 2002.
2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, Ne
York, 1974.
3. A. Rahman, Nuclear Magnetic Resonance-Basic Principle
Springer-Verlag, New York, 1986.
4. K. Nakamoto, Infrared and Raman Spectra of Inorganic an
coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc. New York, 1997.
5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnet</i>
Resonance; Wiley Interscience, 1994.
Website and e-learning source 1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview 2. https://onlinecourses.nptel.ac.in/noc20_cy08/preview 2. https://onlinecourses.nptel.ac.in/noc20_cy08/preview

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to PSOs	3.0	3.0	3.0	5.0	3.0

SEMESTER - II

Title of the Course	ORGANIC	REACTION M	ECH	ANISM - II							
Paper No.	Core V – CO	C5									
Category	Core	Year	I	Credits	4	Course					
		Semester	II			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Basic knowledge of organic chemistry										
Objectives of	To understand the mechanism involved in various types of organic										
the course	reactions wit					• •					
	To understan	d the application	ns of s	ynthetically i	mpor	tant reagents.					
	To design sy	nthetic routes fo	r synt	hetically used	l orga	nic reactions.					
Course	UNIT-I: Eli	mination and F	ree R	adical React	ions:	Mechanisms:	E2, E1,				
Outline	and E1cB n	nechanisms. Sy	n- an	d anti-elimin	ation	s. Orientation	n of the				
	double bond:	Hoffmann and	Saytz	eff rules. Rea	ectivi	ty: Effect of s	ubstrate,				
	attacking b	ases, leaving	group	and med	ium.	Stereochemi	stry of				
	eliminations	in acyclic and c	yclic s	ystems, pyrol	lytic 6	elimination.					
	Long lived a	nd short-lived ra	dicals	s – Production	of ra	adicals by the	rmal and				
	photochemic	al reactions, De	tection	n and stability	of r	adicals, charac	eteristics				
	of free rac	dicals, Reactio	ns o	f radicals:	poly	merization, a	addition,				
	halogenation	s, aromatic	subst	itutions, rea	arrang	gements. Re	activity:				
	Reactivity o	n aliphatic, arc	matic	substrates,	reacti	vity in the a	uttacking				
	radical, effec	t of solvent.									
	UNIT-II: O	xidation and	Redu	ction React	ions:	Mechanisms	: Direct				
	electron tra	nsfer, hydride	trans	fer, hydroge	en tr	ansfer, displa	acement,				
	addition-elim	nination, oxidati	ve and	l reductive co	uplin	g reactions.					
	Mechanism	of oxidation	reac	tions: Dehy	droge	enation by q	uinones,				
	selenium dio	xides, ferricyani	de, m	ercuric acetat	e, lea	d tetraacetate,	osmium				
	tetroxide, Re	actions involvin	ig clea	wage of C-C	bond	ls - cleavage o	of double				
	bonds, oxida	tive decarboxyla	ation,	allylic oxidati	ion, o	xidation by cl	nromium				
	trioxide-pyri	dine, DMSO-O	xalyl	chloride (Sw	ern (oxidation) and	d Corey-				

Kim oxidation, dimethyl sulphoxide- dicyclohexyl carbodiimide (DMSO-DCCD).

Mechanism of reduction reactions: Wolff-Kishner, Clemmenson, Rosenmund, reduction with Trialkyl and triphenyltin hydrides, Homogeneous hydrogenation, Hydroboration with cyclic systems, MPV and Bouveault-Blanc reduction.

UNIT-III: Rearrangements:

Rearrangements to electron deficient carbon: Pinacol-pinacolone and semi-pinacolone rearrangements - applications and stereochemistry, Wagner-Meerwein, Demjanov, Dienone-phenol, Benzilic acid and Wolff rearrangements.

Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann and abnormal Beckmann rearrangements.

Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements.

Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement.

Intramolecular rearrangements: Claisen, abnormal Claisen, Cope, oxy-Cope and Benzidine rearrangements.

UNIT-IV: Addition to Carbon Multiple Bonds:

Mechanisms: Addition to carbon-carbon multiple bonds: Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen

Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds, Wittig reaction, Prins reaction. Stereochemical aspects of addition reactions. Mechanism of condensation reactions involving enolates – Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.

UNIT-V: Reagents and Modern Synthetic Reactions:

Lithium diisopropylamine (LDA), Sodium cyanoborohydride (NaBH₃CN),

	meta-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine									
	(DMAP), n-Bu ₃ SnD, Triethylamine (TEA), Diethylazodicarboxylate									
	(DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Phenyl									
	trimethyl ammonium tribromide (PTAB). Diazomethane and Zn-Cu,									
	Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ ,									
	NaIO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC),									
	Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction,									
	Baylis-Hillman reaction.									
Extended	Questions related to the above topics, from various competitive									
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to									
Component (is	be solved									
a part of	(To be discussed during the Tutorial hours)									
internal										
component only, Not to be										
included in the										
external										
examination										
question paper)										
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,									
from this	Professional Communication and Transferable skills.									
course										
Recommended	1 I March and M. Smith Advanced Overmit Chamister, 5th ad									
Text	1. J. March and M. Smith, <i>Advanced Organic Chemistry</i> , 5th ed., John-Wiley and Sons. 2001.									
	2. E. S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,									
	Rinehart and Winston Inc., 1959.									
	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New Age									
	International Publishers, 2015.									
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.									
	5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic Chemistry,									
	7 th edn., Pearson Education, 2010.									
	the state of the s									
Reference	1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill									
Books	International Editionn, 1987.									
	2. L. F. Fieser and M. Fieser, <i>Organic Chemistry</i> , Asia Publishing House, Bombay, 2000.									
	3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,									
	Rinehart and Winston Inc., 1959.									
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.									
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-									
	Wiley, 2010.									
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-									
e-learning	chemistry/organic									
source	2. https://www.organic-chemistry.org/									
Source	meponi in in morganic entition prorga									

Students will be able:

CO1: To recall the basic principles of chemical reactions.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTI	RY-I			
Course	C VI	000					
Paper No.	Core VI	- CC6 Year	I	Credits	4	Course	
Category	Core	Semester	II	Credits	4	Code	
Instructional	Lecture	Tutorial		Practice		Total	
hours per week	4	1	-	3 1 1 11 11 11 11		5	
Prerequisites	Basic con	cepts of phy	ysica	l chemistry	y	1	
Objectives of the	To recall	the fundam	ental	ls of therm	nody	namics and the	composition of
course	1 *	olar quantiti					
						l approach of th	
	_	_		ince of M	axw	ell-Boltzman, I	Fermi-Dirac and
		stein statisti					
					ction	rates for the	e evaluation of
	_	namic parai					
						fast reactions.	
Course Outline	UNIT-1:	Classical	Th	ermodyna	mics	s: Partial mo	olar properties-
	Chemical	potential,	Gi	bb's-Duhe	em	equation-binary	y and ternary
	systems.	Determinati	on of	f partial m	olar	quantities. The	rmodynamics of
	real gase	s - Fugaci	ty- c	determinat	ion	of fugacity by	graphical and
	equation	of state m	ethoo	ds-depende	ence	of temperatur	re, pressure and
	composit	ion. Thermo	odyna	amics of ic	deal	and non-ideal l	binary mixtures,
	Duhem -	Margulus	equ	ation, app	plica	tions of ideal	and non-ideal
	mixtures.	Activity	anc	d activity	/ C	oefficients-stan	dard states -
	determina	ntion-vapou	r pres	ssure, EMI	F and	freezing point	methods.
	UNIT-II:	Statistica	l th	ermodyna	amic	s: Introduction	n of statistical
	thermody	namics, co	oncep	ots of th	nerm	odynamic and	d mathematical
	probabilit	ies-distribu	tion	of disting	guish	able and non	n-distinguishable
	particles.	Assemblie	es, e	nsembles,	car	nonical particl	es. Maxwell -
	Boltzman	n, Fermi	Dirac	e & Bos	e-Eiı	nstein Statistic	es- comparison.
	Partition	functions-ev	valua	tion of trai	nslati	ional, vibration	al and rotational
	partition	functions 1	for n	nonoatomi	c, d	iatomic and p	olyatomic ideal
	gases. T	hermodynaı	nic	functions	in	terms of part	ition functions-
	calculation	n of eq	uilibr	rium con	stan	ts. Statistical	approach to
	Thermod	ynamic pro	perti	es: pressi	ure,	internal e	nergy, entropy,
	enthalpy,	Gibb's fi	unctio	on, Helmh	oltz	function, resid	ual entropy and
	equilibriu	m constants	s. He	at capacity	of 1	mono and diato	omic gases-ortho

and para hydrogen. Heat capacity of solids-Einstein and Debye models.

UNIT-III: Irreversible Thermodynamics: Theories of conservation of mass and energy, entropy production in open systems by heat, matter and current flow, force and flux concepts. Onsager theory-validity and verification- Onsager reciprocal relationships. Electro kinetic and thermo mechanical effects-Application of irreversible thermodynamics to biological systems.

UNIT-IV: Kinetics of Reactions: Theories of reaction rates -effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis. Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.

UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H₂–Cl₂ & H₂–Br₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods-temperature and pressure jump methods, electric and magnetic field jump methods -stopped flow, flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Polycondensation.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)
Skills acquired

from this course

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended	1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of									
Text	Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986.									
	2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th									
	edition, W.A. BenjaminPublishers, California, 1972.									
	3. M.C. Gupta, Statistical Thermodynamics, New Age International,									
	Pvt. Ltd., New Delhi, 1995.									
	K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -									
	2013.									
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of									
	chemical transformation, M acmillan India Ltd, Reprint - 2011.									
Reference Books	1 DA Magnaria And ID Circan Dhysical Chamistry A									
	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A									
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.									
	2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas									
	Publishing, Pvt. Ltd., New Delhi, 1990.									
	3. S.H. Maron and J.B. Lando, Fundamentals of Physical									
	Chemistry, Macmillan Publishers, New York, 1974									
	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom									
	Press,1996.									
	5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.									
Website and	1. https://nptel.ac.in/courses/104/103/104103112/									
e-learning source	2. https://bit.ly/3tL3GdN									

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3-Strong, 2-Medium, 1-Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ΓICA	AL - II	
Course							
Paper No.	Core VII			1		_	
Category	Core	Year	I	Credits	3	Course	
		Semester	II			Code	
Instructional	Lecture	Tutorial		b Practice		Total	
hours per week	- Dagia san	1	3	a ala assai ats		4	
Prerequisites Objectives of the		retand the	_		•	itativa estima	ation of organic
course	compound		COIIC	tept of q	uanı	itative estilla	mon of organic
course	-		olzi11	l in the est	imoti	on of organic	compounds
						•	anic preparations
		two stages.		emmemai	Setu	p for the org	anic preparations
				purification	on a	nd drving te	chniques for the
		d processing		I		J &	1
Course Outline	UNIT-I: I	Estimations:					
	a. Es	stimation of F	heno	l (brominat	ion)		
	b. Es	stimation of A	Anilin	ne (bromina	tion)		
	c. Es	stimation of E	Ethyl	methyl keto	one (i	odimetry)	
	d. Es	stimation of C	Gluco	se (redox)			
	e. Es	stimation of A	Ascor	bic acid (io	dime	try)	
	f. Es	stimation of A	Arom	atic nitro gr	oups	(reduction)	
	g. Es	stimation of C	Glycii	ne (acidime	try)		
	h. Es	stimation of F	Forma	alin (iodime	try)		
	i. Es	stimation of A	Acety	l group in e	ster (alkalimetry)	
	UNIT-II:	: Two stage	prej	parations:			
	a. <i>p</i> -	Bromoaniline	e fror	n acetanilid	le		
	b. <i>p</i> -	Nitroaniline 1	from	acetanilide			
	c. 1,	3,5-Tribromo	benz	ene from a	niline		
	d. Be	enzilic acid fi	rom b	enzoin			
	e. <i>m</i> -	-Nitroaniline	from	nitrobenze	ne		
	f. m-	-Nitrobenzoio	e acid	I from meth	yl be	nzoate	
Extended Professional Component (is a part of internal	examination to be solved	ions UPSC /	TRI	3 / NET/ U	JGC-		mpetitive E/TNPSC others
component only, Not to be included in the external	(10 be di	scussed dum	ng u	ic Tutomai	nou	15)	

examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A.I. Vogel, Elementary Practical Organic Chemistry: Small Scale
Text	Preparations, Qualitative Organic Analysis, Quantitative Organic Analysis,
	Pearson Education, 2011.
	2. F.G. Mann and B.C. Saunders, Practical Organic Chemistry, 4th edn,
	Pearson Education India, 2009.
	3. K. Bansal Raj, Laboratory Manual of Organic Chemistry, New Age
	International, 2009.
	4. V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic
	Principles of Practical Chemistry, Sultan Chand & Sons, 2004.
	5. V.K. Ahluwalia, and R. Aggarwal, Comprehensive Practical Organic
	Chemistry, Universities Press, 2004.
Reference Books	1. R.G. Engel, D.L. Pavia, G.M. Lampman and G.S. Kriz, A Microscale
	approach to Organic Laboratory, 5th edition, Paperback – International
	Edition, 2012.
	2. P.B. Cranwell, L.M. Harwood and C.J. Moody, Experimental Organic
	Chemistry, 3rd edn, Wiley-Blackwell, 2017.
	3. J. Leonard, B. Lygo and G. Procter, Advanced Practical Organic
	Chemistry, 3rd edn, CRC Press, 2013.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Students will be able:

CO1: To recall the basic principles of organic quantitative analysis.

CO2: To explain the method of estimation of organic compounds.

CO3: To develop the skills to estimate organic compounds.

CO4: To develop the skills to handle corrosive and toxic chemicals in organic preparations.

CO5:To categorize organic reactions and their mechanisms relevant to organic preparations.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	INORGA	NIC CHE	MIST	ΓRY PRA	CTI	CAL-I				
Paper No.	Core VII									
Category	Core	Year	I	Credits	3	Course				
		Semester	II			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	-	1	3			4				
Prerequisites	Basic pri	nciples of q	ualit	ative ana	lysis					
Objectives of the		To learn the principles and methods of qualitative analysis of familiar								
course		amiliar catio	_							
		-			•	e qualitatively	a metal ion in			
	-	nce of ano					1			
				•		aring standard				
				_		skili in estimati	ing the amount			
Course Outline		urately pre				· Analysis of a	mixture of four			
Course Outline		-				="				
		· ·	o coi	iiiion cau	ons a	nd two rare ca	tions. Cations to			
	be tested.		1.01							
	Group-I	: W an		•						
	Group IA									
	Group-II			Bi and Cd.						
	Group-III		h, Zı	, V, Cr, ar	nd Ti.					
	Group-IV	: Zn, N	Ji, Co	and Mn.						
	Group-V	: Ba ar	nd Sr							
	Group-Vl	: Li.								
	UNIT-II:	Complexo	metr	ic Titratio	on:					
	1. Estima	tion of zinc,	nick	el, magne	sium,	and calcium.				
	2. Estima	ation of m	ixtur	e of met	al io	ns-pH contro	l, masking and			
		king agents.				1	,			
		0 0		m and lead	d in a	mixture (pH c	ontrol).			
						sence of iron.	0111101)1			
		ination of n	_		-					
Extended						n various com	netitive			
Professional							/TNPSC others			
Component (is a	to be solv		1111)						
part of internal		scussed duri	ng th	e Tutorial	hour	s)				
component only,			8			,				
Not to be included										
in the external										
examination										
question paper)										
Skills acquired	7					ability, Profess				
from this course						n and Transfer				
Recommended							mistry: Inorganic			
Text	_	e Analysis, U		-			weis 3rded The			
	∠. v. v. F	kamanujam, i	inorg	unic semin	ucro	Quanuanve Ana	alysis; 3rded., The			

	National Publishing Company, Chennai, 1974. 3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London. 4. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Revised 5 th edition, ELBS, 1989. 5. Douglas A. Skoog, Donald M. West, F. James Holler and Stanley R. Crouch, Fundamentals of Analytical Chemistry, 8 th Edition, Brooks/Cole-Thomson Learning, USA, 2004.
Reference Books	 G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i>; Chapman Hall, 1965. W. G. Palmer, Experimental <i>Inorganic Chemistry</i>; Cambridge University Press, 1954.

Students will be able:

CO1: To explain the principles and techniques and have skills of qualitative analysis of familiar and less familiar cations in a mixture.

CO2: To analyze a metal ion in the presence of another metal ion.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To describe the principles, techniques and skills related to quantitative determination of ions in a mixture by complexometric titration.

CO5: To estimate one metal ion in presence of another metal ion by complexometric method.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

Title of the	MEDICI	NAL CHE	MIS	ΓRY						
Course Paper No.	Elective 1	III – EC3								
Category	Elective	Year	Ι	Credits	3	Course				
outing of y		Semester	II			Code				
Instructional	Lecture	Tutorial	Lal	Practice	,	Total	•			
hours per week	3	1	-			4	4			
Prerequisites		owledge of				•	•			
Objectives of the						on and drug del				
course				U		mode of action.	•			
Course Outline		drug design				Introduction to	argata Aganist			
Course Outline				_			argets, Agonist,			
	antagonis	t, partial ago	onist	. Receptor	s, Re	ceptor types, T	Theories of Drug			
	– recep	otor intera	ection	n, Drug	sy	nergism, Dr	ug resistance,			
	physicoch	nemical factor	ors ir	nfluencing	drug	action.				
	UNIT-II:	Antibioti	cs:	Introduction	on, 7	Targets of ant	ibiotics action,			
	classificat	tion of antil	oiotic	es, enzyme	e-bas	ed mechanism	of action, SAR			
	of penic	llins and t	tetrac	cyclins, cl	linica	al application	of penicillins,			
	cephalosp	orin. Currei	nt tre	nds in anti	bioti	c therapy.				
	UNIT-III	: Antihype	erten	sive agen	ts ar	nd diuretics: (Classification of			
	cardiovas	cular agent	s, in	troduction	to	hypertension,	etiology, types,			
	classificat	tion of anti	ihype	ertensive a	agent	s, Synthesis of	of amyl nitrate,			
	sorbitrate	, diltiazem,	quini	dine, vera	pami	l, methyldopa,	atenolol.			
	Classifica	tion and r	nech	anism of	acti	on of diuretic	es, Furosemide,			
	Hydrochl	orothiazide,	Ami	loride.						
	UNIT-IV	: Antineop	lastic	e Agents						
	Antineop	lastic Age	nts:	Introducti	on,	cancer chemot	therapy, special			
	problems,	role of alk	ylati	ng agents	and	antimetabolites	in treatment of			
	cancer - I	ntroduction	of c	arcinolytic	anti	biotics and mit	totic inhibitors -			
	Synthesis	of mechl	oreth	namine, c	yclop	hosphamide, 1	melphalan, and			
	uracil - R	ecent develo	pme	nt in cance	er ch	emotherapy.				
	UNIT-V:	Analgesics	s, Aı	nti-inflam	mato	ory and Antid	iabetic Drugs:			
	Introducti	on, Mech	anisı	n of ir	nflam	mation, class	sification and			
	mechanis	m of acti	on	and para	cetar	nol, Ibuprofer	n, Diclofenac,			
	naproxen,	indometha	cin, p	henylbuta	zone	and meperidine	e.			

	Antidiabetic Agents: Introduction, Types of diabetics, Drugs used for
	the treatment, chemical classification, Mechanism of action, Treatment
	of diabetic mellitus. Chemistry of insulin, sulfonyl urea.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry, Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999, 1999 edn. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976. S.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi, 1993, New edn.
Reference Books	 Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12th edn. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of Medical Biochemistry, Hyderabad: Orient Longman. 3rd edition, 2001.
Website and e-learning source	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/ 2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html 3. https://www.classcentral.com/course/swayam-medicinal-chemistry-

12908

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To predict drugs properties based on its structure.

CO2: To describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: To explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: To give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of cancer.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	GREEN	CHEMIST	RY				
Course							
Paper No.	Elective 1		-	G 11.	_		1
Category	Elective	Year	I	Credits	3	Course	
T 4 4 1	T 4	Semester	II	D 41		Code	
Instructional	Lecture	Tutorial	Lat	Practice		Total	
hours per week	3	l ladaa af a	-	al alsausias		4	
Prerequisites Objectives of the	1	wledge of g			_	Graan ahamis	atmy and Graan
course			Dasic	principle	S OI	Green Chemis	stry and Green
course	technique			1.0	,		
		Green cataly	•				
			-	-			ial chemical and
	_			•		Shipping indu	
		Ü	olutio	ons for inc	lustri	al production	of Organic and
	inorganic	chemicals.					
Course Outline	UNIT-I:	Basic Prin	ciple	s of Greei	n Ch	emistry: Introd	duction- Need for
	Green Che	mistry. Goal	s of C	Green Chem	nistry.	Limitations of	Green Chemistry.
		·			•		reen chemistry
				_		_	·
	organizati	ons and Tw	elve p	principles of	f Gree	en Chemistry wi	th examples.
	UNIT-II:	Green Sy	nthe	esis: Choic	ce of	starting mate	erials, reagents,
	catalysts	and solven	ts in	detail, G	reen	chemistry in	day today life.
	Designing	g green syn	thesi	s-Green re	agen	ts: dimethyl ca	arbonate. Green
	solvents:	Water, Ioni	c liqu	ıids - criteı	ria, g	eneral methods	s of preparation,
	effect on	organic re	actio	n. Superc	ritica	l carbon diox	ide- properties,
	advantage	es, drawbac	ks a	nd a few	exan	nples of organ	nic reactions in
	scCO ₂ . G	reen synthes	sis-ac	lipic acid a	and ca	atechol.	
	UNIT-III	: Green Ca	talys	s is: Enviro	nmer	ntal pollution, (Green Catalysis-
	Acid cata	lysts, Oxida	ation	catalysts,	Basic	c catalysts, Pol	lymer supported
	catalysts-	Poly styre	ne a	luminum	chlo	oride, polymei	ric super acid
	catalysts,	Polymer su	pport	ed photose	ensiti	zers.	
	UNIT-IV	: Greener	Rea	actions: F	hase	transfer cata	lysis in green
	synthesis-	oxidation	usin	ig hydro	gen	peroxide, c	crown ethers-
	esterificat	ion, sapo	nifica	ition, anl	hydri	de formation	, Elimination
	reaction,	Displaceme	nt rea	action. App	olicat	ions in organic	synthesis.

	UNIT-V: Green Techniques: Micro wave induced green synthesis -
	Introduction, Instrumentation, Principle and applications.
	Sonochemistry – Instrumentation, Cavitation theory - Ultra sound
	assisted green synthesis and Applications.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic Synthesis, Chapman Hall,1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi, 2001.
	5. A. K. De, Environmental Chemistry, New Age Publications, 2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
Reference Books	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000 4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. https://www.studyorgo.com/summary.php

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic

synthesis.

CO5: To design and synthesize new organic compounds by green methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIO INO	RGANIC (CHE	MISTRY			
Course		T. EG4					
Paper No.	Elective 1		т	C . 1'4	2	C	
Category	Elective	Year	I	Credits 3		Course Code	
Instructional	Lecture	Semester Tutorial		Practice		Total	
hours per week	3	1	Lai	Tractice		4	
Prerequisites President		wledge of c	hemi	istrv		<u> </u>	
Objectives of the		stand the rol			ents.		
course	To unders	stand the bio	logi	cal signific	ance	of iron and sulp	ohur.
	To study	the toxicity	of m	etals in me	dicin	es.	
	To have k	nowledge o	n dia	gnostic ag	ents.		
	To discus	s on various	met	alloenzym	es pro	operties.	
Course Outline	UNIT-I:	Essential to	race	elements:	Sele	ctive transport	and storage of
	metal io	ns: Ferritin	n, Ti	ransferrin	and	siderophores;	Sodium and
	potassium	transport,	Calci	um signali	ing p	roteins. Metallo	penzymes: Zinc
	enzymes-	-carboxypep	tidas	e and car	rboni	c anhydrase. l	Iron enzymes-
	catalase,	peroxidase.	Cop	per enzyn	nes -	- superoxide d	ismutase, Plast
	ocyanin,	Ceruloplas	min,	Tyrosina	ase.	Coenzymes -	Vitamin-B12
	coenzyme	es.					
	UNIT-II:	Transpor	t Pr	oteins: O	xygeı	n carriers - He	emoglobin and
	myoglobi	n - Structui	e an	d oxygena	ation	Bohr Effect. E	Binding of CO,
	NO, CN	to Myoglo	obin	and Hemo	oglob	oin. Biological	redox system:
	Cytochron	mes-Classifi	catio	on, cytochr	ome	a, b and c. Cyto	ochrome P-450.
	Non-hem	e oxygen ca	rrier	s-Hemeryt	hrin	and hemocyani	n. Iron-sulphur
	proteins-	Rubredoxin	and	Ferredoxir	ı- Str	ucture and class	sification.
	UNIT-III	: Nitrogen	fixa	tion: Intr	oduc	tion, types of	nitrogen fixing
	microorga	anisms. Nitr	ogen	nase enzyn	ne -	Metal clusters	in nitrogenase-
	Transition	n metal com	plex	es of dinit	rogen	- nitrogen fixa	ation via nitride
	formation	and reduc	tion	of dinitro	ogen	to ammonia.	Photosynthesis:
	photosyst	em-I and ph	otos	ystem-II-cl	nloro	phylls structure	and function.
	UNIT-IV:	Metals in	medi	icine: Meta	al To	xicity of Hg, C	d, Zn, Pb, As,
	Sb. The	rapeutic Co	ompo	ounds: Va	anadi	um-Based Dia	abetes Drugs;
	Platinum-	Containing	Ant	icancer A	gents	. Chelation th	erapy; Cancer

	treatment. Diagnostic Agents: Technetium Imaging Agents;
	Gadolinium MRI Imaging Agents.
	UNIT-V: Enzymes - Introduction and properties - nomenclature and
	classification. Enzyme kinetics, free energy of activation and the
	effects of catalysis. Michelis - Menton equation - Effect of pH,
	temperature on enzyme reactions. Factors contributing to the efficiency
	of enzyme.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. –Introdution to Bioinorganic chemistry.
Text	 F.M. Fiabre and D.R. Williams — The Principles of Bioinorganic Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31 K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co., USA. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic Chemistry - 1993. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry, S. Chand, 2001.
Reference Books	 M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery Publishing House, New Delhi (1996) M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
*** * -	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-5th-edition-d161563417.html
Course Learning	Dutcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To analyze trace elements.CO2: To explain the biological redox systems.CO3: To gain skill in analyzing the toxicity in metals.

CO4: To get experience in diagnosis.

CO5: To explain nitrogen fixation and photosynthetic mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Course Paper No. Elective IV – EC4	
Category Elective Year I Credits 3 Course Code Instructional hours per week 3 1 - 4 Prerequisites Basic knowledge of solid-state chemistry Objectives of the To understand the crystal structure, growth methods and Year Semester II Credits 3 Course Code Total	
Semester II Code	
Instructional hours per week Comparison of the Lecture Tutorial Lab Practice Total	
hours per week 3 1 - 4 Prerequisites Basic knowledge of solid-state chemistry Objectives of the To understand the crystal structure, growth methods and Σ	
Prerequisites Basic knowledge of solid-state chemistry Objectives of the To understand the crystal structure, growth methods and X	
Objectives of the To understand the crystal structure, growth methods and Y	
	7
scattering.	k-ray
To explain the optical, dielectric and diffusion properties of crystals	
To recognize the basis of semiconductors, superconductivity mate	erials
and magnets.	
To learn about the importance of materials used for renewable en	ergy
conversion.	
Course Outline UNIT-I: Crystallography: symmetry - unit cell and Miller indie	ces -
crystal systems - Bravais lattices - point groups and space groups	- X-
ray diffraction-Laue equations-Bragg's law-reciprocal lattice and	d its
application to geometrical crystallography. Crystal structure–po	
and single crystal applications. Electron charge density maps, net	ıtron
diffraction-method and applications.	
UNIT-II: Crystal growth methods: Single crystal -Low and	high
temperature, solution growth— Gel and sol-gel. Crystal growth meth	ods-
nucleation- equilibrium stability and metastable state. Melt grow	wth -
Bridgeman-Stockbarger, Czochralski methods. Flux technique, phy	sical
and chemical vapour transport. Lorentz and polarization fact	or -
primary and secondary extinctions.	
Characterization—TG/DTA/DSC methods, SEM/TEM Anal	lysis.
Determination of Hardness, Applications of S	ingle
Crystals.	
UNIT-III: Properties of crystals: Optical studies - Electromag	netic
spectrum (qualitative) refractive index – reflectance – transpare	ency,
translucency and opacity. Types of luminescence – photo-, electro-	, and

injection luminescence, LEDs – organic, Inorganic and polymer LED materials - Applications. Dielectric studies- Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature. dielectric constant, dielectric loss. Types of dielectric breakdown—intrinsic, thermal, discharge, electrochemical and defect breakdown.

UNIT-IV: Special Materials: Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and giant magnetoresistance. Ferro, ferri and antiferromagnetic materials-applications, magnetic parameters for recording applications. Ferro, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics-Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO₃.

UNIT-V: Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored to semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO₂ and N₂. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016.
- 2. Arumugam, Materials Science, Anuradha Publications, 2007.
- 3. Giacavazzo et. al., Fundamentals of Crystallography, International

	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf .
	3. https://bit.ly/3QyVg2R

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 – Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3

CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	INDUST	RIAL CHE	MIS	STRY						
Course	CL SILE I			OE C	1					
Paper No.	Core		nt Course – SEC 1 I Credits 2 Course							
Category	Core	Year Semester	II	Credits	2	Code				
Instructional	Lecture	Tutorial		b Practice		Total				
hours per week	3	1	- La	<u> </u>		4				
Prerequisites		wledge of c	hem	istry		1 -				
Objectives of the					appli	cation of vario	us pigments.			
course	To know	the differen	t type	es of glasse	es an	d its applicatio	n.			
	To unders	stand the pro	ocess	of setting	and i	hardening of ce	ement.			
	To learn o	composition	and	refining of	Petr	oleum.				
	To know	about the m	anag	ement of w	vaste	S.				
Course Outline	UNIT- I:	Paints and	Pign	nents:						
	General of	characteristi	cs of	f pigments	- T	ypes of pigme	ents, methods of			
	preparation	on and prop	ertie	es of white	e pig	ments, Red pi	igments, Yellow			
	preparation and properties of white pigments, Red pigments, Yellow pigments and Green pigments - Paints, varnishes and Lacquers -									
							solvent, thinner,			
						ŕ	nt formulations -			
		atings - Lum				r r				
	UNIT- II	: Glass and	d Ce	ramics: M	anuf	acture and pro	cessing of glass.			
	Composit	ion and pro	perti	es of the fo	ollow	ing types of gl	asses: Soda lime			
	glass, lea	ad glass, a	rmoı	ıred glass	, sai	fety glass, bo	prosilicate glass,			
	fluorosilio	cate, colour	ed gl	lass, photo	sens	itive glass. Pla	asticity of clay –			
	white was	res – Glazin	g - a	pplications	S.					
	UNIT- 1	III: Cemer	nting	Materia	ls:	Introduction -	Lime and its			
	manufacture - Gypsum Plaster. Cement, chemistry of raw materials									
	used in cement manufacturing. Types of cement Manufacture of									
	Portland	cement - Ch	nemio	cal Compo	sitio	n of Portland (Cement - Setting			
	and Hard	ening of P	ortla	nd Cemen	t. He	eat of Hydrati	on of Cement -			
	Special C	ement – Co	ncret	e and RCC	C - D	ecay of Concre	ete.			

UNIT- IV: Petrochemicals:

Composition of crude petroleum, Refining and different types of petroleum products and their applications. Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels - LPG, CNG, LNG, biogas, fuels derived from biomass.

UNIT- V: Industrial Chemical Waste Management

Definition, Classification, sources and composition of solid, liquid and gaseous wastes, hazardous and non-hazardous wastes, special waste materials, Storage and transport of wastes, Transportation and collection systems. Management of wastes, minimization, reuse and recycling, Waste utilization and materials recovery. Treatment of wastes: biological treatment, composting, anaerobic digestion, combustion, Incineration, landfills and ultimate disposal.

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. J. Bentley and G.P.A. Turner, Introduction to Paint Chemistry and Principles of Paint Technology, Fourth edition, Springer US, 1998.
- 2. B.K. Sharma, Industrial Chemistry, Goel Publishing house, Meerut, 2000.
- 3. J. A. Kent, Riegel's Handbook of Industrial Chemistry, 9th Edition (PB 1997), CBS Publishers, New Delhi
- 4. Peter Hewlett and Martin Liska, Lea's Chemistry of Cement and Concrete, Elsevier 2019.
- 5. N. K. Sinha, Petroleum refining and Petrochemical, Umesh Publication Delhi, 2003.
- 6. Dr. Ram Prasad, "Petroleum Refining Technology", Khanna Publishers, New Delhi, 2000.
- 7. C.S. Rao, "Environmental Pollution Control Engineering", New Age International Publishers; Third edition, 2018.
- 8. G. Tchobanoglous et al., Integrated Solid Waste Management, McGraw-Hill Publication, New York, 1993.

	9. M.N. Rao, Sultana Razia and Kota Sri Harsha, Solid and
	Hazardous Waste
	Management, BS Publications 2017.
	10. M. N Rao, Wastewater Treatment, Oxford & IBH Publishing;
	3rd edition, 2020.
	11. M.P. Poonia and S.C. Sharma, Industrial Safety and
	Maintenance Management, Khanna Book Publishing Company
	Pvt Ltd., 2019.
Reference Books	1. D. Stoye and W. Freitag, Paints, Coatings and Solvents, Second
200020000	edition, Wiley-VCH, 1998.
	2. W. Herbst, and K. Hunger, Industrial Organic Pigments:
	Production, Properties, Applications, John Wiley and Sons.
	2006.
	3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to
	Ceramics, Wiley Publishers, New York, 1976.
	4. J. Hlavac, Technology of Glass and Ceramics, Elsevier
	Scientific Press, Oxford 1983.
	5. H.F.W. Taylor, Cement Chemistry. Thomas Telford edition,
	London, 1997.
	6. Sami Matar, Lewis F. Hatch, Chemistry of petrochemical
	processes 2 nd edition, Gulf publishing company, 2001.
	7. David S. J. Stan Jones and Peter R. Pujado, Hand book of
	petroleum Processing, Springer, 2006.
	8. John Pichtel, Waste Management Practices: Municipal,
	Hazardous and Industrial, 2nd Edition, CRC Press, USA 2014.
	9. Gayle Woodside, "Hazardous Materials and Hazardous
	Waste Management, Wiley 2nd edition, 1999.
	10. Debashish Sengupta, Brajesh K. Dubey, Sudha Goel, Treatment
	and Disposal of Solid and Hazardous Wastes, Springer; 1st ed.
	March 2021.
Website and	www.epgpathshala.nic.in
e-learning source	www.nptel.ac.in
	http://swayam.gov.in
	(0. 1.5

Students will be able:

CO1: To Understand the constituents, classification, properties and applications of paints.

CO2: To Exemplify the manufacture of cement and ceramics.

CO3: To know the composition of cementing materials, process of setting and hardening of cement

CO4: To understand the types of petroleum products and their applications.

CO5: To Illustrate various methods for treatment of waste.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	M	S	M	S	S	S	S	M
CO 2	S	S	S	S	S	M	S	S	M	S

CO 3	M	S	S	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	M	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low